[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, BERKELEY 4, CALIF.]

The Decomposition of Hyponitrous Acid. I. The Non-chain Reaction¹

BY JERRY R. BUCHHOLZ AND RICHARD E. POWELL

Received September 28, 1962

With addition of a trace of ethanol to suppress a free-radical side reaction, the kinetics of decomposition of $H_2N_2O_2$ to N_2O is reproducibly measurable over the range from ρH 14 to H_0 -6. Four pathways are identified: one involving $HN_2O_2^-$, one $H_2N_2O_2$ and two protonated $H_2N_2O_2$, the latter involving the activity of H_2O to different extents. Activation energies, salt effects and deuterium isotope effects are reported.

The previously published kinetic study of the decomposition of hyponitrous acid is that of Abel and Proisl.² On the basis of rate measurements at pH13–14, they concluded that the molecular species which decomposes is $H_2N_2O_2$. Their conclusion is, however, suspect on two counts: first, that they were forced to assume for the second ionization of hyponitrous acid $pK_2 = 13.5_4$, in serious disagreement with the directly measured value of 11.0 ± 0.1 or $10.8 \pm 0.1^{3a,b}$; and second, that their rate law would assign to dilute aqueous hyponitrous acid at room temperature a half-life of about one-tenth second, whereas such a solution is actually stable enough to permit calorimetric study.3ª Accordingly, it appeared worthwhile to reinvestigate the reaction.

Preliminary experiments showed that the decomposition in solutions more acidic than pH 5 is highly erratic. Some preparations decomposed rapidly, others slowly; upon occasion, the decomposition would proceed slowly for hours, then suddenly become so fast that it was com-plete in a few minutes. The same sort of behavior was noted by Latimer and Zimmermann^{3a}: "A series of experiments disclosed, however, that at 25° a 0.1 M solution was practically completely decomposed in one hour while a 0.01 or 0.001 M solution did not change noticeably in two hours. The decomposition of the 0.1 M solution was quite slow at first but became faster as time went on." We have observed that whenever the erratic reaction occurs, the products include a large proportion of N_2 and NO_3^- ; and that the erratic reaction in 0.1 M hyponitrous acid is suppressed completely by 0.05 to 1 mole % of acrylonitrile, allyl alcohol or even ethanol. These observations suggest that the erratic reaction is caused by a radical chain, whose initiating step is the homolytic fission of hyponitrous acid

$HON = NOH \longrightarrow N_2 + 2OH$

In the present study the radical reaction was purposely suppressed by the addition of 0.1 mole % of ethanol to all runs more acidic than pH 5. Analysis of the product gas (by freezing out N_2O and mass spectrometry of any residual gas) at pH 9, pH 1, $H_0 - 2$ and $H_0 - 5$ showed it to consist of at least 99.9% N₂O in all cases; nor did the solutions contain appreciable NO_3^- , since they were transparent to wave lengths less than 2100 Å. Accordingly, the stoichiometry of the decomposition under these conditions is at least 99.9%

HON=NOH \longrightarrow N₂O + H₂O

Experimental

Hyponitrite was prepared by essentially the method of Divers': NaNO₂ (Baker analyzed 98.8%) was reduced by sodium amal-gam, prepared by dropping mercury onto heated sodium under a stream of dry nitrogen. The hyponitrite was precipitated as the silver salt, which was purified by dissolving in 6 M NH₄OH and reprecipitating with HNO3, then dissolving in 2 M HNO3 and

(4) E. Divers, J. Chem. Soc., 75, 95 (1899).

reprecipitating with NH₄OH, all at ice temperature. Anal. Found: Ag, 77.86; N, 10.00. Calcd.: Ag, 78.24; N, 10.16. Excess of Ag₂N₂O₂ was added to ice-cold dilute HCl, and after filtering off the silver chloride the H₂N₂O₂ solution was made 0.5 M in NaOH and stored at ice temperature until needed. The rote of decomposition was followed by the decrease in ul-

The rate of decomposition was followed by the decrease in ultraviolet absorption of hyponitrite, using a Beckman model DU spectrophotometer equipped with a thermostated copper block. Each run was made on a separate solution. In the highly alkaline region the wave length used was 2470 Å., the λ_{max} for N₂O₂⁻⁻; in the pH range 7-11, 2320 Å., the λ_{max} for $HN_2O_2^-$; and in acidic solutions, the lowest wave length obtainable with the instrument (around 2150 Å.), since the λ_{max} for $H_2N_2O_2$ is 2070 Å. Reactions were usually followed for at least three half-lives, and all were clean first order.

The initial concentration of hyponitrous acid was 10^{-4} M for each run, the concentration of buffer approximately 10^{-2} M, For each run, the concentration of burner approximately $10^{-1}M$, and, except for those runs otherwise noted, enough NaCl was added to bring the ionic strength up to 1.0 M. The reagents used for control of ρ H were: ρ H 12–14, NaOH; ρ H 10–12, K_2 HPO₄ plus NaOH; ρ H 7–9, H₃BO₃ plus NaOH; ρ H 4–7, KH₂PO₄ plus NaOH; ρ H 0–3, HClO₄; all ρ H's were measured with a Beckman model H ρ H meter. In the H₀ region H₂SO₄ was used for all solutions the H being colluded from the data of used for all solutions, the H_0 being calculated from the data of Long and Paul.⁵ All solutions more acidic than pH 5 contained 0.1 mole % ethanol; vide supra.

Results and Discussion

The dependence of the rate on acidity, from pH 14 to H_0 -6, is shown in Fig. 1. These data can be analyzed conveniently by considering four regions of acidity, in each of which a separate mechanism of decomposition predominates: (a) In solutions more alkaline than pH 4, decomposition of $HN_2O_2^-$; (b) from pH 4 to H_0 – 1, uncatalyzed decomposition of $H_2N_2O_2$; (c) from H_0 – 1 to – 4, acid-catalyzed decomposition of $H_2N_2O_2$, dependent on the activity of H_2O ; and (d) in more acidic solutions than H_0 -4, acidcatalyzed decomposition not dependent on the activity of H_2O .

The smooth curve of Fig. 1 is calculated from the corresponding four-term rate law

$$d N_2O/dt = k_a[HN_2O_2^-] + k_b[H_2N_2O_2] +$$

 $k_{c}[H_{2}N_{2}O_{2}]h_{0}[a(H_{2}O)]^{2} + k_{d}[H_{2}N_{2}O_{2}]h_{0}$

Decomposition of the Anion.—Between pH 7.5 and 10.5, where the species $HN_2O_2^-$ accounts for most of the hyponitrous acid in solution, the rate exhibits a plateau with k_a (25°) = 5.0 × 10⁻⁴ sec.⁻¹ (half-life 23 minutes). In more acidic or more basic solutions, in which the population of $HN_2O_2^-$ is depleted by the formation of $H_2N_2O_2$ or $N_2O_2^{--}$, respectively, the observed rate follows closely the population of the species $HN_2O_2^{--}$; the apparent rate constant is given by

$$\frac{R_{\rm a}}{1 + \frac{[{\rm H}^+]}{K_1} + \frac{K_2}{[{\rm H}^+]}}$$

where our data are fitted by $pK_1 = 6.75$ and $pK_2 = 10.85$ at ionic strength 1.0 *M*. These values are in satisfactory agreement with the literature^{3a}.^b values (at infinite dilution), namely, 7.0 ± 0.1 and 10.9 ± 0.1 , respectively.

No significant kinetic salt effect would be anticipated in the plateau region, since the activated complex has

(5) F. A. Long and M. A. Paul, Chem. Rev., 57, 1 (1957).

⁽¹⁾ Presented at the 142nd Natl. Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 14, 1962. (2) E. Abel and J. Proisl, *Monatsh.*, **72**, 1 (1938).

^{(3) (}a) W. M. Latimer and H. W. Zimmermann, J. Am. Chem. Soc., 61, 1550 (1939); (b) C. N. Polydoropoulos, Chim. Chronika, 24, 147 (1959).

Fig. 2.-Salt effects on the decomposition of hyponitrous acid.

the same charge as the reactant; on the other hand, there ought to be a pronounced positive salt effect on the acid side of the plateau, and a negative effect on the basic side, because of the salt effects on the first and second ionizations of hyponitrous acid. These are in fact just the salt effects observed (Fig. 2). The magnitudes of the salt effects are approximately those expected on the basis of the activity coefficients of $N_2O_2^{--}$ and $HN_2O_2^{-}$, although here one can only proceed by analogy with activity coefficients of known salts, the activity coefficients of hyponitrites not having been measured.

It was on this point that Abel and Proisl went astray. They worked with 0.1 M to 1 M NaOH, without maintaining constant ionic strength or taking activity coefficients into account. Consequently, a negative salt effect was superimposed on the inverse-first power dependence on $[OH^-]$ in this region, leading to a false result for the dependence of rate on pH.

Decomposition of the Molecule.—Between pH 0 and pH 3, where H₂N₁O₂ is the principal species and neither the decomposition of HN₂O₂⁻ nor of protonated H₂N₂O₂ contributes significantly to the rate, there is a plateau with k_b (25°) = 4.9 10⁻⁷ sec.⁻¹ (half-life 16 days). As this small rate of decomposition indicates, an aqueous solution of hyponitrous acid can be stored at this acidity for a number of days without extensive loss, provided the free-radical decomposition has been suppressed. There is no significant salt effect on the rate of decomposition of H₂N₂O₂ (Fig. 2).

Acid-catalyzed Decomposition.—Over much of the H_0 range, the curve of log k vs. H_0 has a slope consider-

ably less than unity. Bunnett⁶ has examined a large number of such cases, interpreting them in terms of the number of additional water molecules implicated in the activated complex. Following Bunnett, we plot our data in the form $\log k/h_0 vs. \log a(H_2O)$; Fig. 3. The

Fig. 3.—Bunnett plot for the decomposition of hyponitrous acid in the H_0 region.

points fall well on a curve representing the sum of the two dotted lines in Fig. 3, the one at moderate acidities having a slope (Bunnett's w) of 2, the one at high acidities a slope of zero. On a somewhat literal interpretation, these results indicate one mechanism in which a proton is transferred to 2 water molecules, plus another in which it is donated to solvent (presumably to H₂SO₄) without the requirement of water molecules. The corresponding terms in the rate law are

$$k_{c}[H_{2}N_{2}O_{2}]h_{0}[a(H_{2}O)]^{2} + k_{d}[H_{2}N_{2}O_{2}]h_{0}$$

with $k_{\rm c} (25^{\circ}) = 1.67 \times 10^{-5}$ and $k_{\rm d} (25^{\circ}) = 6.4 \times 10^{-5}$ sec.⁻¹.

At the time this work was completed, the authors were not aware of another instance of a reaction in which a pathway involving water molecules is superseded at high acidities, as the activity of water is reduced, by another pathway not involving water. Professor D. S. Noyce has kindly informed us that it has recently been observed⁷ in the isomerization of *cis*-2-methoxychalcone.

- (6) J. F. Bunnett, J. Am. Chem. Soc., 83, 4956, 4968. 4972 (1961).
- (7) D. S. Noyce and M. J. Jorgenson, ibid., 84, 4312 (1962).

TABLE	I
-------	---

TEMPERATURE EFFECT ON DECOMPOSITION RATES OF HYPONITROUS ACID^{*a,b*}

Temp., °C.	Raw k. sec1		
18.6	2.78×10^{-4}	$k_{\rm a} = 2.78 \times 10^{-4}$	$pH 8.5 \Delta H^{\ddagger} = 23.5 \pm 1.5$ kcal.
25.3	6.42	6.42	$\Delta S^{\pm} = 6 \pm 5 \text{e.u.}$
32.2	17.9	17.9	
39.9	44.6	44.6	
25.0	5.01×10^{-7}	$k_{\rm b} = 4.93 \times 10^{-7}$	p H 2.05 $\Delta H^{\ddagger} = 24.7 \pm 0.2$ kcal.
44.0	63.5	62.5	$\Delta S^{\pm} = -5.8 \pm 0.7 \text{e.u.}$
60.0	448	441	
25.0	3.72×10^{-5}	$k_{\rm c}h_0[a({ m H_2O})]^2 = 1.67 \times 10^{-5}$	$H_0 - 3.65 \Delta H^{\ddagger} = 22 \pm 2$ kcal.
40.0	23.1	9.1	$\Delta S^{\ddagger} = -24 \pm 6 \text{ e.u.}$
55.0	136	54	
0.7	0.665×10^{-4}	$k_{\rm d}h_0 = 0.643 \times 10^{-4}$	$H_0 - 5.69 \Delta H^{\ddagger} = 22.9 \pm 0.2$ kcal.
25.0	17.7	17.1	$-5.57 \Delta S^{\pm} = -21.2 \pm 0.7 \text{ e.u}$
34.4	52.1	50.4	-5.52

^a k_a , k_b , k_c and k_d have been calculated from the raw k-values by subtracting the contribution of pathways other t han that under consideration. In calculating $\Delta S \neq$ for k_b , k_c and k_d , the basis has been k/2 in order to take into account the statistical factor of 2 in these pathways. ^b The experiments for determination of k_a were carried out at ionic strength 0.05 M; for k_b , at ionic strength 0.01 M. Because of the comparatively small salt effect, these differ only slightly from the values at ionic strength 1.0 M.

Temperature Dependence.—The data on the temperature dependence of the rate constants are collected in Table I.

Deuterium Isotope Effect.—The effects of carrying out the reaction in 99% D₂O are given in Table II.

TABLE II

Relative Rates of Decomposition of Hyponitrous Acid in D_2O and H_2O

			$k(H_2O)/$
	$k(D_2O)$	$k(H_2O)$	$k(D_2O)$
pH 8.5, 25°, ionic strength			
$0.05 \ M$	4.96×10^{-4}	6.42×10^{-4}	1.30
pH 1, 60°, ionic strength			
0.1 M	2.30×10^{-5}	4.48×10^{-5}	1.95
45.2% D ₂ SO ₄ vs. 47.3%			
H2SO4, 25°°	1.13 🗙 10-5	1.62×10^{-5}	1.43
44.4% D ₂ SO ₄ vs. 46.5%			
H ₂ SO ₄ , 25°	0.972×10^{-5}	1.41×10^{-5}	1.45
63.8% D ₂ SO ₄ vs. 65.7%			
$H_{2}SO_{4}, 25^{\circ}$	4.76×10^{-4}	6.75×10^{-4}	1.41
65.2% D2SO4 vs. 67.1%			

 H_2SO_4 , 25° 6.34×10^{-4} 9.52 $\times 10^{-4}$ 1.50 ^a In comparing D₂SO₄ with H_2SO_4 , solutions of equal mole fractions are considered.

Interpretation.—Although the assignment of structures to activated complexes is naturally speculative, our observed rate laws and the associated salt, temperature and isotope effects do suggest certain plausible structures.

The decomposition of $HN_2O_2^-$ probably takes place by the simple scission of the oxygen-nitrogen bond

HO····NNO-

since this would lead at once to the products $OH^$ and N₂O, and the observed ΔS^{\pm} is reasonable for a unimolecular decomposition. The observed isotope effect can, no doubt, be rationalized *a posteriori* as a secondary or solvent effect; we are not, however, able to claim that it would have been predicted on the basis of current theory.^{8,9}

In the decomposition of $H_2N_2O_2$, the isotope effect suggests that an O. . .H bond is being broken in the activated complex, and the somewhat negative ΔS^{\pm} suggest that it has a somewhat restricted geometrical structure. The internal hydrogen transfer in *cis*hyponitrous acid would be consistent with these prescriptions

the subsequent decomposition of the zwitterion H_2O^+ ...NNO⁻ being rapid. It is implausible that the fission of the zwitterion is itself the slow process, since this would be expected to have the opposite isotope effect and to have a salt effect considerably greater than that observed.¹⁰

The acid-catalyzed decompositions probably proceed as do acid-catalyzed enolizations, the addition of a proton to one end of the molecule facilitating the loss of a proton from the other

The observed H_0 dependence, as well as that on $a(H_2O)$, are typical of enolizations. The observed isotope effect, interpreted as a primary isotope effect on the leaving proton, partially compensated by the isotope effect of the catalyzing proton, is also consistent with this model.

(8) C. G. Swain and R. F. W. Bader, Tetrahedron, 10, 182 (1960).

(9) C. A. Bunton and V. J. Shiner, Jr., J. Am. Chem. Soc., 83, 42, 3207, 3214 (1961).

(10) Cf. L. C. Bateman, M. G. Church, E. D. Hughes, C. K. Ingold and N. A. Taher, J. Chem. Soc., 974 (1940).